Insect Illustration
by Elaine R.S. Hodges \qquad
Variations in the Occurrence of Swamp Butterflies Between Central Maryland and Northern Virginia
by Richard H. Smith, Jr. ... 6
Collecting Aphids from Walnuts and Hickories Through the Years
\qquad
Rearing Swallowtail Butterflies for Obtaining Ichneumon Parasitoids of the Genus Trogus

$$
\begin{aligned}
& \text { mon Parasitoids of the Genus Trogus } \\
& \text { by Robert T. Mitchell }
\end{aligned}
$$

The Sphinx Moths of Maryland by Robert S. Bryant
The Butterflies of Soldiers Delight, Baltimore County, Maryland 16

Maryland's Most Common Aphids by Theodore L. Bissell

Three Micro Moths (Gelechioidea) Utilizing the Dead Elm Niche by Robert S. Bryant
Book Notice ... 19
I, a Butterfly
by Mary Garber Secoy

MARYLAND

ENTOMOLOGIST

MARYI AND ENTOMOLOGICAL SOCTETY

Executive Committee

Timothy Karpetsky, President

John F. Carroll, Vice President Philip J. Kean, Secretary-Treasure Robert S. Bryant, Editor-Historian

Members at large:
Austin P. Platt
John H. Fales

The purpose of the Maryland Entomological Society, which was formed in November, 1971 , is to promote the science of entomology all its branches, to provide a meeting place for professional and amatuer entomologists residing in Maryland, the District and other Virginia, Pennsylvania and Delaware, to issue per publications dealing with entomology, and ideas and informan in
study of entomology. All members receive the Maryland Entomologist and monthly newsletters and/or announcements of meetings. Institutions may subscribe to the Maryland Entomologist but may not become member current year, together with their full name, address, telephone number, and special entomological interests.

```
Active members - annual dues $5.00
Junior members (under 18) - annual dues $3.00
Institutional subscriptions - $6.00
```

Send remittances, payable to Maryland Entomological Society, and address changes
Maryland 21207.

Back issues of the Maryland Entomological Society Newsletter (Vols. $1,2, \& 3-8$ nos. each) and the Maryland Entomolopist are available, to members, from the Treasurer. The $\frac{M}{}$. E. . S. Nevisletters are .25 per no. and the Maryland Entomologist is $\$ 1.00$ per copy

* - * - * - * *

The Maryland Entomological Society is a non-profit, scientific organization. Meetings are held on the third Friday of every month (irom October to May) at 8:00 $\mathrm{p}_{0} \mathrm{~m}_{\cdot}$, in room 403 of the Biological Sciences Building, University of Maryland Baltimore County.

* _ * _ * _ * _ *

Cover illustration: The logo of the Maryland Entomological Society features the Maryland Shield and a specimen of Buphydryas phaeton (Drury), the Baltimore Checkerspot, which became the official insect of this Society.
John H. Fales

A collecting trip was made to middle Maryland on May 29, 1979 in company with William R. Grooms. Fog occurred early, but it became clear then drove north into Frederick Co. We arrived at the gate to Sugarloaf Mountain at $2: 22 \mathrm{P} . \mathrm{M}_{\text {. This is a prominent quartzite monadnock with for- }}$ ests of oak and hickory in the southeastern area of the county. It rises to an elevation of 1282 feet, which is about 800 feet above the from the Fourth View parking lot. During the next 30 minutes the butter from the Fourth View parking lot. During the next 30 minutes the butterflies were scarce, although a single Erynnis icelus was collected. Also lus troilus and Graphium marcellus. However, on arriving at the nearly flat $\frac{\text { summit, }}{}$ we suddenly $\frac{\text { were aware that the air was filled with butter- }}{}$ flies. They were very active and continually flew after each other all over the summit. The species seen and collected were: Amblyscirtes vialis (Edw.) roadside skipper, Erynnis icelus (Scud. \& Bur.) dreamy dusky wing, Epargyreus clarus clarus (Cram.) silverspotted skipper, Battus ohilenor philenor (L.) pipevine swallowtail, Papilio glaucus glaucus L . tiger swallowtail, Papilio troilus troilus L. spicebush swallowtail, $\frac{\text { Graphium }}{\text { argiolus }} \frac{\text { marcellus }}{(\text { Bdv.\& LeC.) }}$ (Cram。) zebra swallowtail, $\frac{\text { Celastrina }}{}$ argiolus pseudred spotted purple, Nymphalis antiopa antiopa (L.) mourning cloak and relygonia comma (Harris) comma
This was a perfect example of the hilltopping behavior of butterflies and this isolated mountain was an ideal situation for its occurrence. The writer previously reported on an observation of hilltopping on the Coastal Plain in southern Maryland (Maryland Entomologist, 1978, 1 (2): 10).

$$
\text { J.H.F., } 2809 \text { Ridge Road, Huntingtown, Md. } 20639
$$

INSECT ILLUSTRATION
Elaine R. S. Hodges
In the effort to communicate information to others about natural science, illustrations amplify words. The subject lies before the reader with little room for misinterpretation, if the drawing is done well. In nify tiny structures, correct distortion, reconstruct broken parts, show overlapping layers in detail, clarify anatomy, and eliminate dirts, show overlapping layers in detail, clarify anatomy, and eliminate dirt. tion. A pretty but inaccurate drawing is useless for scientists and misleading for the public. To insure the required accuracy, the scientist should check all aspects of a drawing thoroughly, because even an experienced illustrator occasionally makes mistakes and can misinterpret or miss parts.

Rough but proportional drawing
Achieving this accuracy is done, not by drawing freehand, but by producing a measured or optically traced rough drawing that has true proportions. A simple and inexpensive method is to use a grid in the microdrawn in corresponding squares on the paper. Different-sized squares on papers produce differing sizes of drawings. To avoid having squares show on the finished illustration, draw on tracing paper placed over the grid.

Optical instruments often used are the camera Iucida and, for slidemounted specimens, the microprojector. The camera lucida usually fits between the stereo or compound microscope oculars and objectives and on one side has a prism reflecting a mirror. On the table under the mirror is drawing paper. To avoid distortion of the image, the microscope and the microscope should sit sturdily on that same slant, or both should be on a flat surface. When you look through the microscope oculars with the camera lucida attached, you see simultaneously the specimen with both eyes and the drawing paper and pencil with one eye the three images with
two eyes. The image is not really projected onto the paper; it cannot tioned rough drawing. Changing objective (not ocular) magnification changes the size of the image. Wild and Nikon make camera lucidae, but some older models that fit on an ocular are occasionally available at less cost.

A microprojector is an upside-down compound microscope, with light coming from above, passing through a slide-mounted specimen, the objecSize of the projected image can be adjusted by raising and lowering the drawing surface, or changing microscope objective andor ocular magnification. The image is clearly visible on the drawing surface and is traced. A relatively inexpensive microprojector is the Bausch \& Lomb Tri-Simplex.

With any optical instrument and the ocular grid, drawings should be made only of the image in the center two-thirds of the field of view. The outer third is distorted by lens curvature: spherical aberration. Always record the magnification used, and place a scale on the drawing
for future reference. Size of the drawing is determined by the size of the publication
the amount of detail to be shown. Generally, one-third reduction and the amount of detail to be shown. Generally, one-third reduction nal. Up to fifty percent reduction -- and even more -- can be satisfactory if lines are thick enough and sufficient space is left between lines and dots so that they do not run together. For fifty percent reduction, maintain white space between dots and lines at least equal to the diameter of adjacent dots or lines. However, very large drawings take longer to produce, are bulky to mail and handie, and their detail may be lost in great reduction, invalidating one reason for making a large drawing, iee., to show detail. fifty percent reduction. Some printers prefer to reproduce halftones one-to-one (same size as original) or at less than one-third reduction.

If the rough drawing done from the camera lucida or microprojector is not the right size, it can be enlarged or reduced by a grid system or
with an opaque projector, also called the "Lazy Lucy." This instrument with an opaque projector, also called the "Lazy Lucy." This instrument stat machine can be used also.

Whether the rough drawing is done on the final drawing surface or on an intermediate paper, frequently tracing paper, is determined by the eventual rendering technique. Pen and ink can be applied over a pencil film. For a halftone technique, plan to trace or transfer the detailed pencil drawing onto another, final surface, which will be clean and undamaged as a result. Insect illustration supplies in general include tracing paper (for rough drawings, cover sheets, etc.), kneaded rubber erasers, soft pencil-style multilith erasers, and, of course, sharply pointed pencils.

Detailing

After the rough, measured drawing is completed, its detailing is completed from the microscope. Nuances of texture and shape, the tiniest studied and recorded. Much of the rough drawing may be erased and changed slightly while basic proportions are maintained. The detail that is important in a scientific drawing often is not visible with optical projection techniques. This is why it is important to go over every aspect of the rough drawing from the microscope at magnifications higher than was possible when recording basic proportions.

If possible, turn the specimen and study it from several angles. Reverse dry microscope slides, balancing them on two pennies to keep the cover slip off the microscope stage, Study additional specimens. These efforts help in the understanding of structures and their relationships

Keep in mind that insects are constructed like telescoping cylinders nnected by flexible membranes. Even the genitalia follow this basic pattern. Projections are often small, perhaps flattened, cylinders sitting on larger cylinders. Judge whether double lines at edges delineate the thickness of a body wall (and therefore might be shown as one thick line) or represent two separate anatomic edges. Watch out for artifacts, distorted or torn parts and dirt that look like structures. Do not draw too many fine lines to represent folds of membrane; these can become con-
fused with venation or striation, depending on their location.

The illustrator's detailed drawing, covered by tracing paper, is
ed by the scientist. This tracing paper can be used to indicate corrections and questions as well as to protect the drawing. After corrections are made, final rendering can be started.

Rendering

Most insect illustrations are line drawings rendered in pen and ink. This is the most dependable medium for successful reproduction in print. Whether the journal's paper is soft or hard, coated or uncoated, whatever as long as black ink is used and drawings are not made too large. Grayed ink or more than fifty percent reduction can result in disappearing lines and detail. Halftone drawings -- pencil, carbon dust, wash (gray watercolor, diluted ink), some coquille board techniques -- reproduce best if printed on glossy, coated paper and with minimal reduction.

Fig. 2. Tonc drawing, carbon dust on coated board. Use f a drawing board coated with material like plaster (available commercially for edical illustrations) permits scratching rophilidae, is a new African Kruia $\frac{\text { chrysopema }}{\text { described by Paul Spangler in Pan Pacific intomolosist, January }}$ 1981.

Photographs are halftones. Halftone reproduction requires that the camera photograph the drawing through a screen, breaking the drawing photographically into little black dots, bigger in blacker parts of the illustration, smaller in gray parts. This results in the effect of varied tones of gray with no true black or white. The "white" background will appear pale gray from the tiny dots created by the screen, unless special masks are cut by the printer or artist to create photographically a truly white background. Halftone techniques can make a drawing look most like the specimen by producing a photographic effect. But, how the drawing will be printed should be considered before embarking on a halfpage, because this costs more to print, usually.
page, bec pen and ink drawings, the following supplies are useful
Pens - technical pens or "dip" types: Experimentation with brands of technical pens and dip or crowquill-type nibs will determine what suits each person best. Nibs have different characteristics: e.g., Hunt 104 - firm, Gillotte 659 - flexible, but both produce fine lines. Different nibs may require different holders.
ink desin - waterproof India ink: technical pens will require an India Surfaces - two-ply bristol board, plate (shiny) finish, or plastic films, vellum, or frosted acetate for tracing drawings.
paper. $\frac{\text { Erasers - The electric eraser is invaluable for corrections on }}{\text { It leaves bristol board smoother than when untouched. Soft red }}$ or white eraser plugs are less abrasive than gray ones. For plastic films, special plastic erasers are available. Kneaded rubber eraser are good for erasing pencil lines after inking is complete and dry. tic film scratching white lines over dark areas on plastics, cleaning crowquill nibs
"White-out" paint and brush - Use artist's white (Pro-white, Dr. Martin's, etc.) for corrections, not those designed for typing errors. A very small watercolor brush, 5-0, is most useful.
use, they should be kept clean. sort. wiped clean with lint-free materials such as a wet chamois whenever ink i depleted in the nib and before the pen is dipped in ink or ink applied with a dropper. Dip the pen so that ink reaches only half-way up the nib or use a dropper to fill the nib. After each refilling and before applying pen to paper, always test the pen on a scrap of the same paper to insure that no lint on the nib will spoil the line.
listing of best to contaplies here. To learn some of these techniques, it would be Natural Science Illustrators, $P .0$. Box 652 , Washingtor or the Guild of scientific Nence Illustrators, P.O. Box 652, Washington, D. C. 20044. Some dering techniques.
If several separate drawings must be arranged together on a plate, this can be planned in advance by tracing the pencil drawings, which have been taped into the proper composition, in ink onto a large sheet of drawings should be rendered in final arrangement after the detailed drawings have been transferred or traced onto the rendering surface, because any cut marks, edges, or tape will show in the photography and are expensive to hide.

Mounting, labeling, protection

Drawings should be mounted securely on board for protection. Inked drawings on bristol board can be waxed, rubber cemented, or taped to the board. Rubber cement will stain yellow eventually throuph the bristol board. Rubber cement will stain yellow eventually through the bristol into position on the mounting board with transparent tape. Drawings that are to be reproduced in line, i.e., black and white, will be photographed with film that picks up primarily black/white and therefore will not show, for the most part, cut edges, tape, etc. In addition, these imperfections can be "opaqued" out on the negative because the background will be pure white; anything covered with black (or red) on the negative will print white on the positive (journal publication).

After the drawing is mounted, labeling may be necessary, dependent on the rules of the journal. Professional-looking labeling results from use of "transfer type" or cut-out letters. The former can be rubbed into comes off; it should not be covered ith acetate because static electricity hastens the lifting off of these letters. Good brands of transfer type are Geotype, Chartpak, available at college book stores, art stores, and some other outlets. The cut-out lettering, Formatt brand, is more durable than the rub-off type, will not crack or lift off, but may take a little-longer to apply, and its transparent edges may show in halftones, mostly on black backgrounds. It does come with a white background in a black circle that shows up quite well on photographic prints. Careful burnishing of the edges will make the tracing racing paper, taped on the back of the board.
photograph as a record and insurance in case of a good xerox copy or time copies are not retained will be the time the illustrations are one To help prevent loss, label the back of the board with the author's name and address, instructions to return the illustrations, and the name of the manuscript and journal. (Some printers handle several scientific journals.) Protect mounted drawings for shipping with heavy cardboard on
both sides. If corrugated board is used, alternate the directions of the

6

MARYLAND ENTOMOLOGIST
corrugations to strengthen the package.
Suggestions given here are meant to help the author with drawings that he or she must do. However, for most efficient use of time, and usually for best results, a scientific illustrator should be employed. po save time and money, remember that much visual information can be conveyed in simple diagrammatic drawings, often more effectively than with elaborate drawings. A good illustrator can make a simple drawing esthetic as well as informative and accurate.

Acknowledgements

I thank Ronald W_{0}. Hodges, my husband, for his review and improvement of this manuscript, and Bob Bryant for his patience in waiting for it. Paul J. Spangler, Smithsonian Institution, kindly permitted use of

Selected References

Allen, Arly, 1977. Steps Toward Better Scientific Illustration. Allen Press, Inc., Lawrence, Kansas 66044. 35 pp., paperback, $\$ 1.50$. Pocket pal, 1979. (issued every four years). International Paper Co., 220 $4{ }^{2}$ nd. St., N.Y., N.Y. 10017 . approx. $190 \mathrm{pp} .$, paperback, approx. $\$ 3.00$. A reference for printing techniques.
Wood, Phyllis, 1979. Scientific Illustration. Van Nostrand, Reinhold,N.Y. Litton Educational Publishing, Inc., 135 W. 50 th. St., N. Y., N. Y.
10020. 148 pp., hardback, $\$ 17.95$. A good introduction to basic 10020. 148 pp., hardback, $\$ 17.95$. A

Zweifel, Frances W. 1961. A Handbook of Biological Illustration. Univ. of Chicago Press, Chicago, Ill. 60637.131 pp., paperback, $\$ 3.95$. Good introduction with some information about specimens, but reference is made to materials that are no longer available.
E.R.S.H., Scientific Illustrator, Dept. Entomology, Smithsonian Institution, Washington, D.C. 20560

```
* - * - * - * - *
```

VARIATIONS IN THE OCCURRENCE OF SWAMP BUTTERFLIES BETWEEN CENTRAL MARYLAND AND NORTHERN VIRGINIA

Richard H. Smith, Jr.

Having collected butterflies enthusiastically in the Baltimore, Md area from 1965 to 1971 and in northern Virginia from 1973 to 1978 , I had the opportunity to observe any butterfy population differences which are only separated by roughly 50 miles and have similar terrain, elevation, and ratio of woodland to developed area. Therefore, I would not have expected to notice any profound differences in butterfly populations. It is my observation, however, that certain swamp butterfly species do show distinct population changes as we cross from one area to the other.

One species showing particular sensitivity is Poanes massasoit (Scudder), a small swamp skipper. Despite the fact that it is locally times in swampy areas south of the Potomac River. Covell (1967), in fact reports that massasoit has not been recorded in Virginia. Similar disreports that massasoit has not been recorded in tributional peculiarities hold for other swamp butterflies as follows:
Euphydryas phaeton (Drury) - locally common in the Baltimore, Md, area; only two known recent records for northern Virginia (Field Season Boloria selene myrina (Cramer) - occurring locally north of Was
 occurring locally in mountainous ; absent in northern virginia but and Clark, 1951)
Lycaena hyllus (Cramer) - occurring locally just north of the Potomac know (rales and Grooms, 1980); the only reported Virginia record known to me is for Poverty Hollow near Blacksburg (Field Season Solites mystic (Scudder)
Polites mystic (Scudder) - occurring locally northwest of Baltimore, Md ;
absent in northern Virginia but occurring locally in some mountain-
ous areas in western Virginia (Clark and Clark, loc. cit.)

Euphyes conspicua (Edwards) - often coexisting with massasoit and localbut occurring locally in some mountainous areas in western Vinia (Clark and Clark, IOC. cit.)
To explain such distributional trends, we may simply alude to the fact that most of these species are typified as northern (Howe, 1975). when moving southward, can lead to thaverage temperature and daylight, environment, and butterfly species. However grad disappearance of foodplant, rupt distributional changes noted abovewever, it would seem that the abcauses. My conjecture, which is based more require some more specific than on geological records and butterfly life occasional observations ulation trends are due to soil differences and the need by these the popof permanently wet swamps.
ous, and water absorbent Maryland appears to be comparatively sandy, porto reach the surforbent. Thus, underground water flows are more likely tion, rainfall is by prolonging is mo likely to be absorbed deeply into the soil, there many of the above species in permaning summer dry spells. I have found land. In contrast to Maryland soil, northern ly clay-like and weakly permeable. This inhibits the soil appears mostface springs from underground water flows. Swampy areas do ation of surlowlands during rainy periods and remain for several weeks because of poor soil permeability. However, such areas frequently dry up completely in summer for several days and few, if any, remain permanently swampy. The life histories of the species cited may depend upon permanently swampy conditions to proceed normally, but northern Virginia soil prop erties do not generally provide this feature. The possible dependency of checked experimentally. Such effects would shan should be, thoroughly that many insect species are effects would serve to illustrate the fact in our environment.

Literature Cited

Andersen, W. A. and R.S. Simmons, 1979. Notes of Maryl and Lepidoptera. 6.
idoptera. 6.
Clark, $\frac{\text { the }}{\mathrm{A} . H .} \frac{\text { Lepidopterists }}{\text { and I. F. C1ark }}, \frac{\text { Society. }}{1951 . ~ T h e ~ V u t t e r f i c i e s ~ o f ~ V i r g i n i a . ~ S m i t h s o n i a n ~}$
Covell, C.V., Jr., 1967. A Checkist of the Butterflies and Skippers of
 land in 1979. Maryland Entomologist. Vol. 1 No. 4 Collecting in Maryield Season Summary for 1975 News of the
Field Season Summary for 1978. News of the Society. No. 2
terists' Society. No. 2
Howe, W. H., 1975 . The Butterflies of North America. Doubleday and Co., Inc.
Garden City,
R.H.S., 5213 Eliot's Oak Rd., Columbia, Md. 21044

* _ * _ * _ * _ *

COLLECTING APHIDS FROM WALNUTS AND HICKORIES
THROUGH THE YEARS
Theodore L. Bissell
Hickories and walnuts constitute the plant family Juglandaceae in North America. The principal cultivated species are pecan, actually a My interest in aphid Koch., and English walnut, Juglans regia L. Quaintance, U.S. Bureau of Entomology, trees started in 1925 when Dr . A.L. conduct investigations on pecan insect pests. to southern Georgia to of Lepidoptera and Coleoptera to deal with ind study of the Phylloxera. However, a new pest appearedgested a sideline black pecan aphid, Melanocallis caryaefoliae (Davis), which caused it the spotting and defoliation. There were also two yellow species on pecaf species, species, Monelliopsis nigropunctata (Granovsky), which had already been
recognized under different names.
I soon found that these all occurred also on several species of wild hickory: mockernut, Carya tomentosa Nutt.; pignut, C. glabra Sweet; sand hickory, C. pallida (Ashe); and water hickory, C. $\frac{\text { aquatica }}{}$ Nutt. Shortly, another species was found on pignut and Richards of Canada. This later described as Monellia microsetosa by . R aphid is pale yellow wit bright yellow internal spots, which unfortucies but is marked by six areay when the aphid is preserved. I have thought the spots merely ornamental; a young biology student recently asked if the spots will ward off predators -- something to look into.

A few lines as to the methods of collecting aphids: These insects always take their nourishment from plants, hence the common name of "plant lice." My way is to look over a tree, pick off infested leaves, put them in polyethylene bags with labels, and take them home for stud under the microscope. In hot weather, one must and life stages are sepadirect sunlo about a week, giving time for immatures to develop into adults. Some of about a week, giving immatures as well as the sexual forms should be preserved. All are put into ethanol until they can be cleared and mounted. For permanent mounts, Canada balsam is usually used.
Other collectors sweep plants with a heavy net or beat the foliage and catch aphids on a sheet or pan, putting them, at once, into ethanol. Still another way is to let aphids fly into bright yellow cake pans filled with water. My old friend, Mort Leonard (9he ing pans on the roof of an apartment house in washington, 57 species, 11 of these summers collected about , 250 aphids repre rooftop was 200 feet above making new wooded park was nearby but all the aphids were not inhabitants of trees.

Aphids are also collected on sticky boards, either on the ground, which gives data regarding crop infesting species, or extended from air-
craft (Glick, 1939) to record the heights attained by arthropods carried upward by air currents.
In 1947 I moved from Georgia to my home state of Maryland to engage in extension entomology under the direction of Dr. E. Cory, and aphid collecting became incidental to other work. But in York, north of aphid studies in earnest. That year ${ }^{\text {Albany, to the old stamping ground of Dr. Asa Fitch, the first state }}$ Albany, to the old stamping grogist in America. He studied pest species and nonpest species and in 1855 began a series of 14 annual reports on the insects of New York. These were published by the State Agricultural. Society. The first report (1855) contains a description of "the little hickory aphis," Aphis caryella, noting, "Their wings are not elevated in the usual steeply inclined manner but are laid flat upon the back, in a horizontal direction ..." The genus Monellia was later described on this flat-winged condition which is uncommon in aphids. The common name has been changed to blackmargined aphid.

There are plenty of hickories at Salem (shagbarks and bitternuts, Carya ovata Koch. and Carya cordiformis Koch., respectively) and I som Maryland. There was also the leaf spotting black pecan aphid, which Mitch missed.

I also located Asa's handsome mansion and nearby laboratory, the Battenkill mentioned by him (kill means river), and finally fitch sgrav with his familiar likeness engraved on the stone, in the town cemetery of designed by him. I visited Dr. Athelbert Abbott who gave me a reprint Fitch's Early History of the Town of Salem, and he told me
extensive genealogical records which Naw York State Museum in Albany where J.A. Wilcox, interested in gallerucine beetles, showed me a drawer of Fitch's insect specimens, including a number of aphids on card points, very neatly labeled, specimens then one hundred or more years old pepecton Westward from Albany is the town of Downsville and near it Pepecton ree, trunk over thraw tree, In all I went to New York three years, in June, July and August, to observe the significant color development in the different aphids.

In Maryland I have collected at College Park, at the Plant Introduction Station in Glenn Dale, and at the $4-\mathrm{H}$ Camp in Garrett County, westernmost part shagbark hickoris, which generally have plenty of aphids. Nearby is

Marietta Estate, home of Gabriel Duvall, lawyer friend of Washington, Jefferson, and Madison. Here are four giant pecans, 100 feet tall and three to four feet in diameter, which are believed to have been the gift of Thomas Jefferson. A great admirer of the tree, he got nuts from New Orleans and Illinois and planted them at Monticello. (See Betts, 1944.) native element and they usually bear an abundance of aphids. One of these I shall describe as new; I have found it in six other states and eastern Canada.

In the District of Columbia is the National Arboretum, a truly great place for trees and aphids. On hickories there I have found two species to describe (1978), Protopterocallis gigantea and P. quadrata. Ohio, Pennsylvania, Virginia, North Carolina, and South Carolinansas, California I visited the San Fransisco Bay area where William M. Davidson studied walnut aphids and published on them nearly 70 years ago, and also at Los Angeles County Arboretum where Harry G. Walker has made probably 5,000 aphid collections from countless numbers of plants and who has sent me slides. When I visited him, he showed me aphids on Mexican walnut and took me exploring on the high desert of Mohave. In Arkansas men from the University took me to the Ben Lomond area in the southwestern corner of the state, where we found the nutmeg hickory, and another undescribed aphid. In Pennsylvania, John Pepper has helpedme. He has collected and published for 40 years and makes the finest balsam mounts I know. I must acknowledge the help of George F. Knowlton of Utah State University for collecting aphids from walnut and pecan from some 40 localities in all parts of his state. Utah has no native walnut trees but the eastern black walnut was introduced by pioneers long ago and and west found the trees in Utah! tah!
Richards is located. He has helped me with his numerous publications, suggestions, and specimens from his large collection.

In North Carolina, Clyde F^{-}Smith of State University, Raleigh,作 the Neuse River's edge I found a single water hickory and again, Monellia caryella. With Carol Parron as junior author, Clyde published (1978) their monumental list of North American aphids, 1,380 species. We will not soon run out of material to study.

A number of other specialists have helped me materially in recent years: Louise Russell and her successor, Manya Stoetzel, at the USDA collection of aphids and have opened it for my use. Also Henry L. Go Stroyan, Plant Pathology Laboratory, Harpenden, England, whom I have visited twice, took me on a most enjoyable trip to Cambridge, England Three other aphidologists I visited at the British Museum for Natural History in London are Victor F. Eastop, John P. Doncaster, and Roger Backman. Roger distinguishes himself by counting chromosomes in aphid embryos and thus showing group affinities. I have helped him collect in this country. There was also Dick Hille Ris Lamber of Bennekom, The Netherlands, who has advised me on certain aphid structures. I had a
pleasant and profitable visit at his home in 1980 .

Literature Cited

Betts, E.M. 1944. Thomas Jefferson's Garden Book. American Philosophical Bissell, Tociety, Philadelphia, Pa. 704pp.
Bissell, T. .
Fitch, $\frac{\text { Agr. }}{\text { A. }}$ Exp. $\frac{\text { Station, }}{855}$. The First $\frac{\text { Publ }}{\text { Report }}$. $911: 1-78$ Insects ... New York. New York State Agricultural Society. 14:715-880
Glick, Perry A. 1939. The Distribution of Spiders, Mites and Insects in the Air. USDA $\frac{\text { Tech. Bul. } 673: 1-151}{\text { Aphi }}$, 1965. Aphids on a Rooftop 1963. Proc. Ent. Soc. of Wash. 66: 167-8 Smith, C.F. \& C.S. Parron, 1978. An Annotated List of Aphididae of North America. North Carolina Agr. Exp. Station, Tech. Bul. 255:1-428

REARING SWALLOWTAIL BUTTERFLIES FOR OBTAINING ICHNEUMON PARASITOIDS OF THE GENUS TROGUS

Robert T. Mitchell

Some respondents to my request in a recent Maryland Entomologist for specimens of Trogus have inquired about techniques for collecting and rearing swallowtail larvae to obtain the parasitoids. I am therefore offering some suggestions in this issue.
Fwallowtail. Papilio polyenes Fabr, is the first step. The black swallowtail, Papilio polyxenes Fabr., is the species most commonly found since the larvae occur in the nearby vegetable garden, feeding on carrots, parsnips, parsley and other umbelliferous plants. With greater effort Daucus carota L., also called Queen Anne's lace, grows. other swallowdaucus carota that feed primarily on Umbelliferae, with the larvae resembling those of the black swallowtail, are the old world swallowtail, P. machaon L., of northern Canada and Alaska, anise swallowtail, P. Zelicaon Lucas, swallowtail, P. indra Reak., of the western states, and the short-tailed swallowtail, $\underset{\underline{p}}{ }$. brevicauda Saund., of the Gaspé Peninsula, Nova Scotia and Newfoundland. Some western species of this "old world" swallowtail group feed on species of Artemisia (wormwood).

The presence of some swallowtail larvae is revealed by rolled edges of the leaves in which the larva rests on a silken mat. As it grows, the greater part of, or an entire leaf, is rolled. This activity is charac
teristic of the spicebush swallowtail, P. troilus L., on spicebush, teristic of the spicebush swallowtail, P. troilus L., on spicebush, eastern $\frac{\text { stazoin }}{\text { stas. }}$ Similar in appearance to the spicebush swallowtail is palamedes, P. palamedes Drury, of the coastal southeast. It feeds on sweet bay, Magnolia virginiana L., and red bay, Persea borbonia Spreng. They both have large eye spot markings on swollen thoracic segments.

Members of the tiger swallowtail group may also be hiders. They have smaller eye spots than those of the spicebush group. Eastern tiger, P. glaucus L., larvae are found most commonly on wild cherry and other members of the genus Prunus, and on tulip tree, Liriodendron tulipifera . few long conspicuous unconsumed leaf stems occur on the same twig, a larva may be seen on a silken mat on a whole or partly consumed leaf nearby. Western tigers, P . rutulus Lucas, feed mainly on willows, Salix spp., cottonwoods and aspens, Populus spp., while the pale swallowtail, Puckthorn, Rhamnus, of the west coast mountain ranges, feeds mainly on
 chiefly on Rosaceae, especially choke cherry, and occurs in many wester
and coastal states. and coastal states.

Caterpillars of the zebra swallowtail, Graphium marcellus (Cram.), are shaped like those of the spicebush and tiger groups, but they have no eye spots, being ringed with colored bands. They are exposed most of The shiny dark brown, tentacled larva of the pipevine swallowtail, Battus philenor (L.), feeds almost entirely on pipevines, Aristolochia some mature larvae at Wooster, Ohio, that pupated and then remained un attended for three weeks or so. When finally observed, three of them had typical Trogus emergence holes. Eggs are laid in batches, so if you locate one, be sure to look around for brothers and sisters.

In the citrus zone, the larva of the giant swallowtail, P. cresphontes Cram., Elsewere this species accepts' such plants as prickly ash Zanthoxylum americanum Mill., hercules club, Zanthoxylum clava-herculi L., and hop tree, Ptelea trifoliata L. So far, no Trogus has been reared from this species.

No Trogus has been recorded on the tailless swallowtails, Parnassius spp., which feed on sedum at high altitudes. This is not surprising, however, for besides occurring in an environment that people rarely frequent, as related to me by Dr. Karolis Bagdonas, an expert on the butterflies of the Rocky Mountains, the larvae are extremely hard to find, since they hide during the day in litter on the ground.

Illustrations of mature larvae of many of the swallowtail species can be found to the whereabouts of larvae can be outterflies and Moths. adults. A butterfly that seems to be interested in a non-flowering plant may be laying eggs. Observe where. For testing your rearing ability
collect an egg or two, but before leaving the immediate area examine nearby plants of the same species chosen by the female for more eggs or females. About two weeks later, or when your test caterpillars are 8-10 mm . long, return to the area to collect parasitized ones. The more time that elapses the easier it will be to find the larvae because of their larger size, but the longer you wait the fewer there will be to find, because disease, birds, predacious insects, weather, etc., continue to decrease their number.

Tightly closed $i-1 b$. coffee cans or $1-q$. freezer boxes are very convenient for rearing larvae to maturity, and these can be stacked to save space, but I prefer transparent freezer bags sealed with ties. In and, if kept out of direct sunlight, or high temperatures, mold will not be a problem as long as they are cleaned regularly. With freezer bags the need for replenishing food or for cleaning can be determined and the growth of the larvae can be observed without opening them. A bag can easily be cleaned by merely turning it inside out. In order to save space I hang the bags on ropes like clothes.

When the larvae are small, several of them can be kept in smaller containers, but larger larvae, especially those in the last instar, should be confined individually. As a larva reaches maturity, an inclined stick should be placed in the container to provide a favorable pupation site. These sticks with the chrysalids attached can then be tape amply large the butterflies can emerge and spread their wings without damage. The chrysalids are visible through a nylon stocking stretched over the open top. A rubber band holds the stocking tight and serves also to hold the excess material of the leg and foot twisted and tucked under it. When a butterfly or Trogus emerges, the leg and toe portion is withdrawn and held upright, where, when the specimen 'flies in, it can be captured.

Remember that while butterfly rearing is fun, it can and should also be a scientific venture. There is still much to learn about the biologies of even some fairly common butterflies, so do keep good field recsubmit to me, I hope that you can provide the locality information, submit to me, I hope that you can provide the locality information, including habie, and the date on which 10 was laken. If was reared species, size, food plant, and date of pupation. Also, I would like to know the date of Trogus emergence. All over-wintering chrysalids should be kept under natural conditions, for emergence dates are meaningless when pupae are kept indoors.

Selected References
Mitchell, Robert T. 1979. A Review of Swallowtail Butterfly Parasites of Mitchell, R.T. and H.S. . Mim, 1977. Butterflies and Moths. Golden Press, Tyler, New York. pp. 160 Tyler, Hamilton A. 1975. The $\frac{\text { Swallowtail }}{\text { Naturegraph Publishers, }, \frac{\text { Butterflies }}{\text { Healdsburg }} \text { Of North America. }}$
R.T.M., 4109 Tennyson Road, Hyattsville, Md. 20782

THE SPHINX MOTHS OF MARYLAND

Robert S. Bryant

The large and quite often colorful moths of the family Sphingidae have been special favorites of mine since the day when I "caught" my first one by taking it away from a hungry catbird, sans head and antenna, but otherwise in fairly good condition. During the intervening 26 years, I have managed to garner 25 of the approximately 45 species that should eventually be recorded for Maryland. In preparation for this paper I have been in contact with numerous resident and ex resident collectors, about half of whom have generously made their data available to me. Consequently, seven additional species have been added to the list.
cannot be emphasized too strongly. During the course of gatherinected cormation por this report incomplete data and had to be omitted. But, as three of these constituted
ne state records, I shall mention them here and hope that when additional aterial is oblained it will be published at a later date.
Manduca rustica (Fabricius) -- specimen collected by Dr. Robert S. Sphinx chersis (Hubner) -- specimen collected by Mrs. Alan Franklin. Sphinx eremitus (Hubner) -- larva on mint collected by Dr. Raymond Nagle in Howard Co. Hodges (1971) also reports it from the suburbs of Washington, D.C.
There are several other species that, due to their scarcity, deserve comment.

Sphinx franckii Neumoegen, has long been touted as one of North America's rarest sphingids. It is the dream of every serious hawk-moth collector to someday own a specimen, yet few collectors are ever fortunate enough to achieve this goal. In spite of its general rarity, Maryland is one of the few states where one might expect to find an occasional specimen and until about twenty years ago Baltimore was known as a hot
spot of franckii activity. This was due, in part, to the fact that spot of franckii activity. This was due, in part, to the fact that notable collections. During the last two decades, multiple captures in other states (especially South Carolina, Mississippi, and Kentucky) have diminished some of the interest in Md. franckii although I still get occasional requests for specimens or information

For a number of years following the description of franckii in 1893 , it was thought to be a hybrid between Sphinx chersis and Sphinx kalmiae (George Franck, in letter to Dr. Karl Jordan, Nov. 9, 1901) or between S. chersis and ceratomia amyntor (Smyth: 1912). The current feeling is quate data was preserved, were taken in either the Baltimore where adequate data was preserved, were taken in either the Baltimore or WashingMaryland species. In addition, the following specimens with incomplete data are known -

1 specimen from Baltimore now in Munich, Germany
1 male from Baltimore now in Carnegie Museum, Pittsburg, Pa. Several other specimens were collected by Franklin H. Chermock at street lights and store windows on Liberty Road, Baltimore Co., prior to 1963. That locality has been irrevocably buried under acres of concrete and aspharing the past fifteen years.
present in small numbers toward the end of summer. It is considered a southern migrant but it seems possible, in mild winters, that a few pupa may be able to overwinter in Maryland soil. I refer to the extremely early capture of a specimen at Beltsville in Prince Georges Co. by Mr. John Fales on May 31 , 1960. Most specimens have been taken at light or on the flowers of summer phlox

Another apparent rarity is Eumorpha achemon (Drury). I have one specimen of this striking moth taken 22 years ago, a few blocks from my home on the $S W$ boundary of Baltimore City. Only one other specimen has been reported, which is surprising. The food plant is grape and as both be taken from time to time.

Undoubtedly Maryland's prettiest sphingid, and my personal favorite, is Darapsa versicolor (Harris). No dead cabinet specimen can compare unfortunately is the only one recorded thus far. I saw another one in the same place the following year but it had been crushed on the sidewalk by some careless passer-by.

One other species is worthy of mention in view of the few records turned in. Agrius cingulatus (Fabricius), which is common in the south ern states and Central America, is occasionally collected in Maryland. Carolina. I have seen it in small numbers in Ocean City on store windows and feeding at petunias in porch boxes and flower gardens. The presence of a number of individuals, in good condition, seems to indicate that they were not part of a migration but matured somewhere in the vicinity. since this species has been recorded from Nova Scotia as early as July, it is reasonable to assume that some moths may enter Maryland in June and that eggs laid by the migrating females, then give rise to one or more broods of Md, bred adults. It should be expected to occur, with some regularity, in the southern counties and on the Eastern Shore where the

August 1981

sandy soil is

 Sphingids are, generally speaking, fairly easy to collect since their habits bring them into close contact with man. Most of them are lacemed to man's incancescent, flourescent, and mercury-vapor ligh stree ights. ilis. Even more erfective as a lig "black lights" manufactured by sev point, are the ultra violet lamps or black lights manufactured by st results (Pfrimmer, 1955). These small portable units are excellent for sampling rural areas where normal lightint is scarce or non-existent. Many of the larger species may be caught while nectaring at deephroated flowers such as trumpet vine, morning glories, petunias and honey suckle, while at least five of the smaller species may be trapped y using the conventional fruit bait (Bryant, 1978). Even a few artificial chemical baits have proved partially successful specifically isoamylsalicylate and methyl benzoate in alcohol for A. cingulatus and phenylacetaldehyde in alconol for $\frac{\sin }{}$ eremitus (Howe, in litt.).Though identifying females can be a bit difficult, especially for the tyro, sphingids may be bred and reared as easily as the silk moths. drical cage of nylon mosquito netting, especially if sprigs of the food plant are present. The larvae present no special rearing problems, provided they are not crowded. Overcrowding tends to cause restlessness and the caudal horns of many larvae are damaged by being bitten by roaming siblings. Such horn damage always causes loss of hemolymph and in extreme cases may cause deformity through difficulties encountered during ecdysis. Mature larvae pupate on or in the ground and if a box containing or 4 inches of moist sand and peatmoss is provided for this purpose, perfect, healthy pupae are usually the result. Any pupae which fail to eclose at the normal time should not be discarded without careful examination. I have had several c. t . Fernald (188) is the $\frac{\text { inyntor }}{\text { only author I have read who men }}$ ions this phenomenon in regard to the Sphingidae, though it has often been recorded for various species of the Saturniidae.
I would like to point out another interesting feature contained in Fernald's paper on The Sphingidae of New England. He thoughtfully provided syla, which takes very little extra space and time, is of immeasurprocedure, which takes very little extra space and time, is of immeasu able help to those of us who do not have a background in latin and, if practiced by current authors, would
throughout the'scientific community. remaining species, not mentioned above. Although 15 of the 23 counties remaining species, not mentione specimen, it will be evident that the majority of records are from the central portion of the state; i.e., from Baltimore Co. in the north to St. Marys Co. in the south. Considerably more collecting needs to be done in the eastern and western counties. The list is arranged alphabetically by county and these are capitalized to make them more noticeable. It is hoped that members having material not mentioned here, or upon collecting additional species in the future, will report them to the author or otherwise make their data known. initials following the dates, in most cases, indicate the collector ansuit the acknowledgements section.

Agrius cingulatus (Fabricius) -- BALTIMORF Co.: Ten Hills, VIII-61(RSB), ST. MARYS Co.: Lexington Park, $17-1 X-73(\mathrm{JHF}) \& 4-\mathrm{X}-73$ \& $11-\mathrm{X}-75(\mathrm{PJ})$
all 3 collected by J.Haliscak, \& $7-\mathrm{X}-73$ \& $12-\mathrm{X}-73(\mathrm{JPH})$. WORCESTER Co.: Ocean City, VII-58(RSB)
Manduca sexta (Linnaeus) -- ANNE ARUNDEL, Co.: Annapolis, 21-VII-78(WTH). BALTIMORE CO.: Baltimore, 20-VIII-4?(WAA). Loch Raven, 1,4,6-VIII-69 \& 17-VI \& 27-VII-70(RSB), Lutherville, 14-VIII-61(WAA). Owings Mills, 20-VIII-64(BDW). Ten Hills, 17-VI-69 \& 21-VIII-73(RSB). CO. Finksbur Plum Point, 1 \& 3 to $30-\mathrm{VI}$ \& $18-\mathrm{VII}$ to $6-\mathrm{IX}-60$ \& $6,14,29-\mathrm{VI}-62(J H F)$. ST. MARYS Co. Lexington Park, 6-VIII-73 \& 9-VIII-75 (JPH).
Manduca quinquemaculata (Haworth) -- ANNE ARUNDEL Co.: Annapolis, (WTH). BALTIMORE Co.: Catonsville-UMBC, (PJK). Loch Raven, 1-VIII-69 \& 22-VI \& 16-VII-70(RSB), 19-VIII-62(WAA). Owings Milis, 13-VI-67 (BDW). CALVERT CO.: Plum Point, 15 \& 19-VIII \& 5-IX-59 (JIFF). CARROIL Co.: Reese, $3-V I I I(R S B)$. PRINCE GEORGES CO.: Beltsville,
$15-V I-43 \& 30-V-62$ \& $7-\mathrm{VI}$ to $5-\mathrm{VII}$ \& $12-\mathrm{VII}$.to 6-IX-60(JHF).

ST. MARYS Co.: Lexington Park, 9-VIII-75(JPH). county unknown: Ivy ca jasminearum (Guerin) -- ALLEGANY Co.: Flintstone, 1-VIII-62(RSB) (WTH). BALTIMORE Co.: Loch Raven, 6 \& 23-VII-70(RSB). Luthervilie 4-VIII-61(WAA). Moncton, 15-VII-65(WAA). ST. MARYS CO.: Lexington
Dolba hyloeus (Drury) -- ANNE ARUNDEL Co.: Crownsville, (WTH). ST. MARYS Co.: Lexington Park, 19-VIII-73(JPH).
$\frac{\text { Ceratomia }}{M O R E} \frac{\text { amyntor }}{\text { CO. Catonsville-UMBC, (PJK). Luth }}$ (Gey Annapolis, (WTH). BALTIMORE Co.: Catonsville-UMBC, (PJK). Lutherville, 16-VII-70 \& VII-77 (RSB) collected by W.A. Andersen. Ten Hills, VII-54 \& 21-VI-66 \& 3 \& 23-VI-70(RSB). CALVERT Co.: Plum Point, $9-\mathrm{VII}-75(\mathrm{JHF})$. ST. MARYS
CO.: Lexington Park, 3 \& 5-VII-74 (JPH),
eratomia undulosa (Walker) -- ANNE ARUNDEL Co.: Annapolis, 8-VI \&
28-VII-79(WTH). BALTIMORE Co.: Catonsvilie-UMBC, (PJK). Loch Raven, 26-VII-71(RSB), Lutherville, 1 -VII-63 \& 23-V-78(WAA). Patapsco State Park, 2-VI-79(PJK). Stevenson, 25-VII-65(RSB). Ten Hills 15-VIII-72 \& 13-VI-73 \& 12-VI-76(RSB). CALVERT CO.: Plum Point, 30-VIII-59 \& $31-\mathrm{V}-75(\mathrm{JHF})$. ST. MARYS Co.: Lexington Park, $14-\mathrm{VI}-741$
(JPH). (JPH).
$\frac{\text { Ceratomia catalpae (Boisduval) -- ANNE ARUNDEL CO.: Annapolis, (WTH). }}{\text { BLTTMORE CO }}$. BALTIMORE Co.: Baltimore, 19-VIII-47(WAA). Catonsville-UMBC, ex larva eclosed 26-VII-70(RSB). Owings Mills, 20-VIII-64 \& 14-VIII-68 15-VIII-45(JHF) : PRINCE GEORGES CO. Bel Tsville, 19-V to : Woodside, 15-VII to 24-VIII-60(JHF). ST. MARYS Co.: Lexington Park, 10-X-75 (PJK) collected by J.Haliscak, \& 20-VIII-75(JPH). Oaks, 5-IX-74(RSB) collected by W.A. Andersen.
Paratrea plebeja (Fabricius) -- ANNE ARUNDEL Co.: Annapolis, 27-V \& 2-VII-79(WTH). BALTIMORE Co. : Baltimore, 19-VIII-47(WAA). Owings Mills, 22-VI-65(BDW). Ten Hills, Plum Point, 28 \& 29-VIII \& 5-IX-59 \& 31-V \& 2-VI-75(JHF).
Sphinx franckii Neumoegen -- (1 male \& 1 female) Bal timore, 14 -VII-04 ex Rothschild collection-now in British Museum of Natural History; (1 male) Baltimore, 14-VII-04 ex B. P. Clark collection-now in Carin British Museum of Natural History; (1 maie) Baltimore, 2-IX-58 ex W. Sieker collection-leg. F.H. Chermock-now in Rene Lichy collection, Paris, France; (1 female) Baltimore, VI-08 now in U.S. lected by R.Nagle-specimen not preserved; Washington, D. C., 31-V-02.
Sphinx $\frac{\mathrm{kalmiae}}{\text { lected by }} \mathrm{F}$. Smith - Chermock. ALLEGANY CO.: Flintstone, 1-VIII-62 (RSB) collected by F.H. Chermock. ANNE ARUNDEL Co.: Annapolis, (WIP). BALTI-
MORE Co.: Catonsville-UMBC, 25-VII-73(PJK). Lutherville, 6-VIII-62 (WAA). Mc.Donough, VII-58(RSB). CALVERT CO.: Plum Point, 3 -VI \&
Lapara coniferarum (J.E.Smith) -- ALLEGANY Co.: Flintstone, 1-VIII-62(RSB) collected by F. H. Chermock. ANNE ARUNDEL CO.: Annapolis, 26 \&
28-VII-79(WTH). BALTIMORE CO. 27-VII-70 \& 9-VIII-71(RSB). Lutherville, 16-VIII-61(WAA). Owings Mills, 4-VII-71 (BDW). Ten Hills, 12-VIII-64(RSB). CALVERT Co.: Plum Point, 17-VIII-74(JHF). ST. MARYS CO.: Lexington Park, 11-VIII-74
(JPH). (JPH).
$\frac{\text { Smerinthus jamaicensis (Drury) }}{\text { BALTIMORE ANNE ARUNDEL CO.: Annapolis, (WTH). }}$ BALTTMORE Co, : Eklo, 5-VIII-47(WAA). Lutherville, 6-VIII-62(WAA).
Ten Hills, $21-\mathrm{VI}-77(\mathrm{PJK}$) collected by A.P. Platt. PRTNCE GFORGES Co Ten Hills, 21-VI-77(PJK) collected by A.P. Platt. PRINCE GEORGES Co.

Paonias excaecatus (J.E.Smith) -- ANNE ARUNDEL CO. Annapolis, (WTH) Crownsville, 1950 (JHF) collected by W.G. Bodenstein. BALTIMORE Co. Loch Raven, 17 -VIII-61 \& 8-VIII-62(WAA), $1,4,6,7-$ VIII-69 \& 2, 6 , VII-58(RSB). Patapsco State Park, 2-VI-79(PJK). Ten Hills, 24-VI-73 (RSB). CALVERT Co.: Plum Point, 16-VIII-75(JHF). CARROLL Co.: Reese, 28-VII-72(RSB). PRINCE GEORGES Co. Beltsville, $27-\mathrm{V}-43$ \& 2 \& $15-\mathrm{VI}$ \& 17-VIII-60(JHF). ST. MARYS Co.: Lexington Park, 11-VIII-74 \& 14-VIII-75(JPH).
 2-VII-79(WTH). BALTIMORE Co.: Baltimore, $21-\mathrm{VIII}-47$ (WAA). Catons-
ville-UMBC, $8 \& 16-$ VIII-73(PJK). Loch Raven, ville-UMBC, 8 \& 16-VIII-73(PJK). Loch Raven, 4-VIII-69 \& 11 \& (WAA). Patapsco State Park, 8-V-76(PJK). Ten Hills, 27-VII-68 \&

August 1981
MARYLAND INTKMOLOGIST
15
4-VI-71(RSB) \& 7-VIII-81(RSB). CAIVERT Co.: Plum Point, 23-VIII \&
 Marriottsville, 24-VI-69(RSB) MONIGOMERY Co.: 1-VI to 11 -VII \& 21 -VII to (JHF). PRINCT: GFORGES MARYS CO.: Dameron, 25-VI-74 (JPH). Lexington Park, $14-\mathrm{VI}-74(\mathrm{JPH})$. Oaks, $23-\mathrm{VIII}-73(\mathrm{RSB})$ collected by W. A. Andersen paonias astylus (Drury) -- CHARLE'S Co.: Waldorf, 20-IX-T2(JPH). PRIN M Gropges Co.: Beltsville, 29-VI \& 11-VII \& 5-VIII-60(JHF). ST. MARYS
Co.: Park Co.: Park tall, 28-VII-81(RSB) collected by H.Orduna.
 (PJK). ANIIE ARUNDEL Co.: Annapolis, 11-VII-79(WTH). BALTIMORE CO. Eklo, $15-V I-50($ NAA $)$. Mc Donough, VII-58(RSB). Ten Hills, 24-VI-69(RSB).
Hemaris thysbe (Fabricius) -- ALLEGANY Co.: Green Ridge State Forest 20-IV-77 \& $4-V-74$ (PJK), $9-V-63$ \& $19-\mathrm{V}-66$ (RSB) collected by \%. Baltimore, 23-VIII-48(WAA). Ten IIIILs, $23-V \& 9,16,17-V I I I-69$ \& 17-VII-70 \& 1 \& 5-VIII-71(RSB). PRINCH GLOIGLIS Co.: Hall, 15-VIII-68 (JAA). WASIIHGROH CO.: WOodmont, $2-V-68(\mathrm{HAA}), 7-V-70$ \& $6-V-72$ \& 30-IV-77 (RSB).
licmaris diffinis (BOisduval) -- BALTIMORE Co.: Catonsville-UMBC, 31-VII-73 (1, JK). Curtis Bay, 29-IV-70 (WAA). Lutherville, $5-1 X-59$ \& 20-VIII-66 (WAA). Owings Milis, 2-IV-70(BDW). Stevenson, 28-VIII-69(RSB). Ten 12-VIII-71(RSB). CALVBPT CO.: Breezy Point, 30-VIII-75(JHF). Plum Point, 5-IX-59 (Jilf). CARIKIL Co.: Reese, 30-VII-66(RSB). CIIARLES Co.: Allens Fresh, 5-VIII-72(RSB). CECIL Co.: Bay View, 25-VIII-66 (CO A) A ST. MARYS Co. Lexington Park, $30-\mathrm{VI}-74 \& 11 \& 30-\mathrm{VI} \&$
 Unionville, 21-IV-66(wAA).
Lumorpha pandorus (Hubner) -- ALLEGANY Co.: Flintstone, 1-VIII-62(RSB)
 26-VII-61(WAA). Lutherville, 3-VIII-61(WAA). Owings Mills, 5-VII-71 (BDid). 'Ten Hills, VIII-56 \& VII-57(RSB). CAIVERT Co.: Pilver Spring, 12-VII-33(JHF). Woodside, 20-VII-46(JHF). PRINCE GEDRGES Co.: Beltsvilie, 5 \& $19-V I I \&, 12,17,18,22-V I I I-60(\mathrm{JHF})$. SI' MARYS Co 11-VIII-74(JPif).
Bumoroha achemon (Drury) -- BALTTMORE CO.: Pen Hills, VII-59(RSB). ST.

Darapsa versicolor (IIarris) -- BALITMURE Co.: Loch Raven, 23-VI-69 \&
Darapsa myron (Cramer) -- NNNE ARUNDiL CO.: Annapolis, 8-VI-79 (WTH).
BALTIMORE CO.: Baltimore, 21-VIII-4? \& 30-VII-61 (\%AA). Loch Raven, $12-V I I I-61$ (WAA), 23-VI-69 \& 5-VI \& 6-VII-70 \& 28-VI \& 12 \& 26-VII-7 RSB). Ten liilis, 13 - 33 (VIS CARROLL CO.: IIdersburg, 2-VI-79(PJK). PRINCE GBORGES CO.: BeltsCARROLL CO.: (JPH). WICOMICO CO.: Fruitland, 17-VIII-76(RSB) collected by W.A. Andersen.
Darapsa pholus (Cramer) -- ALISFGANY Co.: Flintstone, 1-VIII-62(RSB) colIected by F.H. Chermock. ANNE ARUNDEL Co.: Annapolis, 12-V-79 (WTH). BALTIMORE CO.: Catonsville-UMBC, 8-VIII-73(PJK). Loch Raven,
$12-V I I I-61$ (VAA), 4-VIII-69 \& 27-VII-70 \& 20-VI \& 22-VII-71 (RSB). $12-V I I I-61($ VAA $), ~ 4-V I I I-69 ~ \& ~ 27-V I I-70 ~ \& ~ 20-V I ~ \& ~ 22-V I I-71(R S B) ~$
\& Ten Hills, 29-VII-72(RSB). PRIHCE GEORGES CO.: Be1tsville, $21-\mathrm{VI} \& 25 \& 26-\mathrm{VII}$ \&
Park, 15 -VI-74(JPH).
Sphecodina abbottii (Swainson) -- ANNE ARUNDEL Co.: Annapolis, 12-V-79
 Raven, 20-V-62(WAA). Ten Hills, $5-\mathrm{V}-80(\mathrm{RSB})$. 'Timonium, 24-V-77(WAA). ST. MARYS CO.: LexinEton Park, 11-VI-76(JPH).
Deidamia inscripta (Harris) -- AlLEGANY Co.: Green Ridge State Forest, 5-V-60(WAA). NNNE ARUNDEL Co.: Ft. Meade, 11-VI-79 (WTH). BALTIMORE Co.: Lutherville, 13-VI-63(WAA). McDonough, IV-53(RSB). PRINCE GEORGES Co.: Beltsville, 23-V-66(JHF). WASHINGTON Co.: Greenbrier State Park, $17-1$
$20-I V-77(\mathrm{PJK})$.
Amphion nessus (Cramer) -- ALLEGANY Co.: Green Ridge State Forest, 14-V-75 (PJK). ANVE ARUNDEL CO.: Annapolis, 14-VI-79 (WTH), 29-IV-80(PJK).

BALTIMORE CO.: Catonsville-UMBC, 27-VI-70(WAA), 7,9,15,17,22-VI \& 1-VII-70(RSB), 10-VIII-73(PJK). Prettyboy Reservoir, $28-$ V-59 \& 6-VI-57(WAA). Ten Hills, 13 \& $15-V I$ \& 2-VII-70 \& 18-V-72(RSB). DORCHESTER Co.: Henrys Crossroads, 10-VI-65(WAA). PRINCE GEORGES Co.: Beltsville, 30-VI-67(JHF). WASHINGTON Co.: Exline, 2-V-62(WAA). Pearre, $1-\mathrm{V}-69$ (WAA). Woodmont, $2-\mathrm{V}-62$ (WAA).
Xylophanes tersa (Linnaeus) -- ANNE ARUNDEL CO.: Annapolis, (WTH). BALTIMORE CO.: Ten Hills, VIII-55(RSB). CALVERT Co.: Plum Point, 2-IX-59 MARYS Co, Lexington Park, $10-\mathrm{X}-75$ (PJK) coll 31-VIII-71 \& 12-VIII-75(JPH). county unknown: Ivy Neck, 15-VIII-68 (BDW).
Hyles lineata (Fabricius) -- ANNE ARUNDEL CO.: Annapolis, ex larva eclosed \& V-V-79 (WTH). BALTIMORE C0.: Ekio, 6-VIII-4? (WAA). Ten Hills, VI-55 \& V-56 \& VI-60(RSB). GARRETT CO.: Avilton, 11-VIII-66(VAA). PRINCE
GEORGES Co.: Beltsville, $11-\mathrm{V}-49$ \& $19,24,31-\mathrm{V}$ \& $15-\mathrm{IX}-60$ \& $4-\mathrm{VI}-62 ~$ GEORGES Co.: Beltsville, 11-V-49 \& 19,24,31-V \& 15-IX-60 \& 4-VI-62 (JHF). ST. MARYS Co.: Huntersville, 27-VII-61(WAA).

Acknowledgements

I would like to express my appreciation to Dr. Bryant Mather of Clinton, Mississippi for allowing me to read a rough draft of his unpubfor allowing me to use the data pertaining to Maryland. I Iranckii and debt of gratitude to Mr. John H. Fales of Huntingtown, Md. for contributing an immense amount of data culled from his notes on light trap captures over an entire season at Beltsville. Special thanks also go to Dr. William A. Andersen of Lutherville, Md., Mr. Jonathan P. Haliscak of Lexington Park, Md., Mr. William T. Hopkins, Jr. of Shadyside, Md., Mr. Philip J. Kean of Baltimore, Md., and Mr. Benjamin D. Williams, III of tions and for answering my inquiry concerning their Md. sphingid captures.

Literature Cited

Bryant, R.S. 1978. Maryland Records of Lepidoptera Taken in a Bait Trap. Fernal $\frac{\text { Maryland }}{\mathrm{d}, \mathrm{C} . \mathrm{H} .} 1886$. The Sphingidae of New England. Sprague $\&$ Son, Augusta
Hodges, Ronald W. i971. Sphingoidea in R.B. Dominick et al; The Moths of North America North of Mexico, Fascicle 21. E.W. Classey Itd. and frimmer, Theodore R. 1955. Response of Insects
to Three Sources of Black Eight. Journal of Economic Entomology. Vol. 48 No. 5 pp. 619. Smyth, Ellison A., Jr. 1912. Description of the Larva and First Bred Specimens of Sphinx (Hyloicus) franckii Neum. (Lepid.). Ent. News.

Selected References

McDunnough, J. 1938. Check List of the Lepidoptera of Canada and the United States of America. Part 1 , Macrolepidoptera. Memoirs of the Smith, $\frac{\text { Southern }}{\text { J.B. } 190} \frac{\text { California }}{}$. The Insects of $\mathrm{New} \frac{\text { Science. }}{\text { Jersey. }}$. Annual . Annual Report of the New Tietz, $\frac{\text { Harrison M. }}{1952 \text {. The Lepidoptera of Pennsylvania. Bulletin } \frac{\text { of }}{} \text { the }}$
R.S.B., 522 Old Orchard Road, Baltimore, Md. 21229

THE BUTTERFLIES OF SOLDIERS DELIGHT, BALTIMORE COUNTY, MARYLAND Richard H. Smith, Jr.

Having a generous supply of free time and interest in natural history, but little cash for gasoline between 1969 and 1971, I decided to Delight area of Baltimore County, Maryland. This area, which covers roughly 2000 acres between Owings Mills and Liberty Reservoir, represents a geologically unique condition known as a serpentine barren. Botanists have long recognized this area for the many unusual plant species which are able to thrive in the barren's thin and shaly soil (Worthley, 1964 and

August 1981
Vincett, 1970). Therefore, I hoped to find, and was able to confirm, eventually, that the insect life in this location was also unusual above three-year period and recorded the butterfly species I encountered during each trip. The following is my final list of species observed, adult appearance times, and notable nectar sources. The species I consider local oddities are noted.
Amblyscirtes vialis (Edwards) -- late May, on blackberry (Rubus spp.) Atrytonopsis hianna (Scudder) -- late May to early June, on blackberry and blue-eyed grass (Sisyrinchium spp.)
Poanes hobomok (Harris) -- late May to early June, at woods edges, on Atrytone delaware (Edwards) -- mid-July, on milkweed (Asclepias spp.) Atalopedes campestris (Boisduval) -- early September
Pompeius verna (Edwards) -- late June to mid-July
Wallengrenia egeremet (Scudder) -- late June to mid-July
Polites coras (Cramer) -- late May to late June, late July to early Sept. $\frac{\text { Polites }}{\text { early September }}$ (Latreille) -- late May to late June, late July to Polites origines (Fabricius) -- mid to late June
Polites origines (Fabricius) -- mid to late June
*Hesperia leonardus Harris -- early September, on blazing star (Liatrus
Ancyloxypha numitor (Fabricius) -- late May to mid-June, late July,
early to late September
Nastra lherminier (Latreille) -- mid-June, late July, late September Pholisora catulius (Fabricius) -- mid to late May, mid-July
Pyrgus communis (Grote) -- late May
Erynnis icelus (Scudder \& Burgess) -- early May to mid-June, on blueberry
Erynnis brizo (Boisduval \& LeConte) -- early May, on blueberry

* Erynnis $\frac{\text { brizo }}{}$ (Boisduval \& LeConte) -- early May, on blueberry
is $\frac{\text { martialis (Scudder) }}{\text { blackberry (in May) }}$
Erynnis horatius (Scudder \& Burgess) -- early May, mid-July, on blueberry
Erynnis juvenalis (Fabricius) -- early May to early June, on blueberry
and blackberry
Thorybes bathyllus (Smith) -- late May to late June, mid-July, on
blackberry
Thorybes pylades (Scudder) -- early to mid-June
Achalarus lyciades (Geyer) -- late May to late June
Epargyreus clarus (Cramer) -- early May to late June, mid to late July Papilio polyxenes asterius Stoll - early May, early to mid-June, on moss phlox (in May)
Papilio glaucus Linnaeus -- early May to mid-June, mid-July to early
Papilio troilus Linnaeus -- early May to late June, late July to early
Pieris rapae (Linnaeus) phlox early May, early to late June, late July Colias eurytheme Boisduval -- early May
Colias philodice Godart - early Nay to late June, early September
Eurema lisa Boisduval \& LeConte -- 1ate July, eariy to Iate September
Anthocaris midea Hubner -- early Nay
Satyrium calanus falacer (Godart) -- mid to late June, on indian hemp *Satyrium edwardsii (Saunders) -- late June to mid-July
Callophrys augustinus croesioides (Scudder) -- early May, on huckleberry
Callophrys niphon (Hubner) -- early May-to early June, on field chickweed (Cerastium arvense Linnaeus)
Strymon melinus $\frac{\text { humuli }}{}$ (Harris) -- early to late May
Everes comyntas (Godart) -- early May to late July, early September
Celastrina argiolus pseudargiolus (Boisduval \& LeConte) -- early May early $\frac{\operatorname{argiolus}}{\text { to mid-June, mid-July }}$
Limenitis astyanax (Fabricius) -- late May to early June, early September Limenitis archiopus (Cramer) -- mid to late July, late September
Cynthja virginiensis (Drury) -- early May to late July
Polygonia interrogationis (Fabricius) -- mid-June
Phyciodes $\frac{c}{\text { tharos }}$ (Drury) -- early May to late July, early to late Sept
Speyeria cybele (Fabricius) -- early June to early September
Euntoiet claudia (Cramer) -- mid-July

Danaus plexippus (Iinnaeus) -- early July, early to late September Cercyonis pegala f. alope (Fabricius) -- late June to early September

*local species

Since many of these species are difficult to find in general, it was pleasing to discover that they all inhabit an area of easy access to naturalists in the Baltimore-Washington area. Recent visits by the Soldiers Delight. We are indeed fortunate that this area, which is now state park, has been preserved in spite of surrounding development over the past few decades.

Literature Cited
Vincett, M.A. 1970. Soldiers Delight. Atlantic Naturalist. Vol. 25 No. 3 Worthley, F G Maryland Plantlife Dependent on Preservation of
R.H.S., 5213 Eliot's Oak Rd., Columbia, Md. 21044

MARYLAND'S MOST COMMON APHIDS

Theodore L. Bissell

The best known aphid in Maryland, at least to the non-farming population, is the "rose aphid" but there are many species that infest roses. Cynthia Westcott in The Gardener's Bug Book, lists fourteen

In our List of Aphids in the District of $\frac{\text { Columbia, Maryland }}{}$ and 1970 . The page space devoted to each one, made up freports from many sources and our own collecting, is now taken as a measure of the prevalence over the years. Such accumulation of records is influenced by the importance or popularity of the food plants; aphids on non-cultivated plants or weeds usually go unnoticed. Bias from the writer's interest in hickories and walnuts and to another's interest in poplar galls has been avoided.
The list was intended to stop at ten most common species but three List
List
(cm) Scientific Name Common Name Food Plants

98 Myzus persicae (Sulzer)
61 Acyrthosiphon $\frac{\text { pisum (Harris) }}{38}$ Macrosiphum euphorbiae (Thom
37 Aphis gossypii Glover
37 Rhopalosiphum $\frac{\text { maidis }}{\text { Tuberolachnus }}$ (Fitch) 18 Brachycaudus persicae (Passerini) Macrosiphum avenae (Fabricius) Schizaphis graminum (Rondani) $\frac{\text { Anuraphis }}{\text { Cinara maidiradicis (Forbes) }}$ Cinara strobi (Fitch) Macrosiphum Iiriodendri (Monell)

Common Name
Food Plants green peach aphid pea aphid potato aphid melon aphid, cotton aphid iant willow aphid black peach aphid nglish grain aphia greenbug orn root aphid hite pine aphid tuliptree aphid
vegetables,
tobacco
peas, alfalfa potato, tomato, watermelon canteloup corn peach wheat, barley oats, wheat corn, aster white pine tuliptree,
magnolia
T.L.B., 3909 Beechwood Road, Hyattsville, Md. 20782

* - * - * _ * - *

Ed. note: The book notice on the following page was sent in by Eugen J. Gerberg, Ph.D., R.P.E.

THREE MICRO MOTHS (GELECHIOIDEA) UTILIZING THE DEAD ELM NICHE

Robert S. Bryant

My observations on the insect life associated with dead elm trees (Bryant 1977) began when I started removing the limbs from the last three of our stately old patriarchs to prevent wind-fall damage. Since beginning that project in 1973, I have noticed many species of micro- With my very limited knowledge of the and hiding in cracks and of the micros, I assumed that the moths I had seen were passing the daylight hours on a fairly safe, cryptic and uneven surface waiting for night to fall. But, upon closer observation and study, it now appears that a least three of the more conspicuous and showy species actually have a closer asso
ing place.
The least attractive of this trio is Eido trimaculella (Fitch). It has the peculiar habit of resting with the head tilted downward, in black with whitish patches, they are difficult to see against the elm bark until they move. The larvae have been recorded as feeding on bracket fungi on dead birch (Hodges, 1974), and there is also apparentiy one record from elm. We have no birch (dead or otherwise) in the immediate vicinity, but the dead elm supports a wide variety of fungi throughout the season. I have collected the moths between 13 May and 4 June. Though seldom seen on elm bark, Mathildana newmanelha (clemens) is never far from it. The adults boldly stroll around on the upper and lower leaf surfaces of maple saplings that have sprung up around our old elm trees. The moths are jet black with two orange chevrons, at from enjoy immunity from predation as many other similarly colored lepidoptera do. Larvae have been found under the bark of elm and apple (Hodges, 1974), and I have had adults of both newmanella and trimaculella eclose in the house in the middle of winter, apparently from elm logs brought in for the fireplace. Normal collection dates are from 30 May to 23 June.

The third moth, Callima argenticinctella Clemens, is by far the prettiest. It is brown and yellow with delicate. Hodges reports that the and white scales and black and white banded legs. podges repor inder iocate the larvae have been found under elm bark but I have been unable to locate the daytime resting place of the adults even though they were abundant at cating a possibility of two broods.

Literature Cited
Bryant, R.S. 1977. Dead Elm Trees - A Microhabitat for a Great Variety of Insects. Maryland Entomologist. Vol. 1 No. 1 pp.2-6.

R.S.B., 522 Old Orchard Road, Baltimore, Md. 21229

* - * - * - * - *

BOOK NOTICE

ANIMAL LIFE OF THE GALAPOGOS. 1980. by Norman Hicklin. Feredune Books, Oxon, England. $236 \mathrm{pp} . \$ 15.00$

Dr. Hicklin has the unique facility of expressing himsilf verbally or in writing, in a manner to interest and delight the reader (or lis"enchanted islands" are simply but adequately stated. There are 84 black and white drawings, in his inimitable scratch-board style. Dr. Hicklin not only describes the animal life, but points out key identification features in non-technical terms, and tells where the animals are found on the islands. It is interesting to find out how many orders of insects have not been found on these islands. only o species or butterflies and 192 species of beetles have been reported.

For anyone planning a trip to the Galapogos, this is a guide book that one should not be without. In addition, there is a chapter on "notes for the visitor" detailing the climate, weather, accommodations, travel, passport requirements, clothing anc other pertinent bits of information.

I, A BUTTERFLY

I have often wondered why
Must I be a butterfly?
Gaudy wings dipping toward the flame, Playing just a flirting game, Chancing not on being spurned

Sipping tiny little sips
Of nectar from a flower's lips,
Never quaffing to the full,
Denying depth's demanding pull. Flitting always gaily by

Don't even care to really fly;
Rather to simply flutter by,
Afraid to light, lest I might miss
A tender smile, a baby's kiss
Or fail to dry a childlike tear
Guess that's the reason I am here.
My chosen path is only true
Demanding naught from any who Choose to soar to greater glory So, wish me well, as flitting by, I wish you well -- a butterfly.

$$
\begin{aligned}
& \text { Mary Garber Sey } \\
& \text { (received for pub }
\end{aligned}
$$

(received for publication - 3/19/81)

Ed. note: One of those little glitches, that make an editor's job interesting, occurred when the above poem was received. ent the poem was returned to the author with the suggestion that the eference to "the flame" be omitted, since butterflies are no known to possess a proclivity for such things. In due course, appended. Havin revisumb options, i present herewith following addition for your amusement or amazement.

EPILOGUE TO - I, A BUTTERFLY
How crude of me to think that I
Could ever be a butterfly
I was as happy as I could be
I didn't know they were
To say I was not a butterfiy
They say a lowly moth am I
Who cannot be a butterfly,
'Cause butterflies don't fly at night-
That I have made a tactical error And am simply not a rhopalocera.
A Lepidopteran they will let me be If I approach on bended knee.
So, Entomology, for what it's worth to you
Dipping my wings, sailing gaily by. To me, I'm still a butterfly!

Mary Garber Secoy - 6/4/81 (Entomology is a journal of the MES)

The Maryland Entomologist is published irregularly by the Maryland Entomological Society. Original articles on geographic and temporal distribution, particularly pertaining to Maryland and adjacen tates, ecology, biology, morphology, genetics, systematics, behavior, etc. are welcome. Book notices and reviews, news of the members, requests for information, notes on distribution, occurrence, migration, editorial review and acceptance. They should be sent to Robert S. Bryant, 522 01d Orchard Road, Baltimore, Maryland 21229.

This publication will reflect the interests, views, and talents of the entire membership. It will be viable as long as everyone views

NOTICE TO CONTRIBUTORS

Contributors should prepare manuscripts according to the following instructions.

Text: Manuscripts should be submitted in triplicate, and must be typewritten, entirely double-spaced, employing wide margins, on on side only of $8 \frac{1}{2}$ X 11 inch paper. The first mention of a plant or animal in the text should include the full scientific name, with authors in zoological names. Underline only where italics are intended. Shor pres. and ganscripts, if accepted, uill be assessed pase pages. Longer manuscripts, if accepted, will be assessed page charges should be given as, Villiard (1964) or (Villiard, 1964, 1969) and al nust be listed alphabetically under the heading IITERATURE CITED, as follows:

Villiard, P., 1964. Multicolored World of Caterpillars. Natural History Vol.LXXIII No. 4 p.24-31
 $1 \frac{\text { History }}{969 .}$ Moths and How to Rear Them. Funk \& Wagnalls, New

Additional references that may be helpful to the reader, and not to exceed six in number, should be

Tables: Tables, graphs and line drawings should be done with indelible, black ink and should be placed on separate sheets, following the main text, with the approximate desired position indicated in the text.

Illustrations: Photographs may be accepted if they are necessary to support the text. Reproduction of photographs may increase the printing cost and authors should expect to pay any extra charges. photographs should be approximately $2 \frac{1}{2} X 3 \frac{1}{2}$ inches, if depicting sing specimens, must be black and white, glossy finish and mounted with frosted tape, wax, or rubber cement to an extra sheet of paper. Figure numbers, as cited in the text, and figure legends should be typewritten below each photograph.

Past Presidents of the M.E.S.
Austin P. Platt - 1971-1973 Douglas C. Ferguson - 1974-1975 Raymond B. Nagle - 1975 -1974-1975 William A. Andersen - 1975-1977 Robert T. Mitchell - 1977-1978 Elaine R_{\circ} Hodges - 1978-1979 Richard H. Smith, Jr. - 1979-1980

